Lecture 20 on Nov. 282013

We have seen the applications of the simplest Cauchy theorem in the above lectures. Today we are going to consider its more general version.
Definition 0.1. A curve γ in Ω is said to be homogeneous to a point in Ω if γ can be deformed continuously to the point. Analytically we have a two variable functions $\gamma(t, s)$ from the rectangle $[0,1] \times[0,1]$ to Ω so that γ is continuous with respect to both t variable and s variable. Moreover $\gamma(t, 0)$ is a parametrization of the curve γ and $\gamma(t, 1)$ is constantly equal to the given point in Ω.

One may refer to the figure 1 to take a glance on the concept introduced above. In fact in figure $1, \Omega_{2}$ is the larger domain and Ω_{1} is the smaller domain inside Ω_{2}. Our Ω is the domain in Ω_{2} without the domain Ω_{1}. For γ_{1} no matter how you deform γ_{1} to a point in Ω, you will alway intersect some points in Ω_{1}. But for γ_{2} we can do so. The difference of these two curves are the follows. For γ_{1}, it enclose an interior region and Ω_{1} is included in the region. While for γ_{2}, Ω_{1} is outside the region enclosed by γ_{2}. In the following, we are going to show that Cauchy's theorem still holds for curves with the same type of γ_{2}.

Given Γ_{1} with positive orientation (see figure 2), we choose another curve Γ_{2} which is quite close to Γ_{1}. We seperate the region between Γ_{1} and Γ_{2} into a lot of small boxes. The size of each box is small enough so that for each small box, we can find a disk to cover it and f is analytic in the disk. Now we zoom out the box A and box B and choose the contour as what is shown in figure 3. Clearly by simple Cauchy thoerem, we know that

$$
\int_{I_{1}+I_{2}+I_{3}+I_{4}} f(z) \mathrm{d} z=0
$$

where f is an analytic function in a domain containing Γ_{1}. Moreover we also have

$$
\int_{J_{1}+J_{2}+J_{3}+J_{4}} f(z) \mathrm{d} z=0
$$

Pay attention that I_{4} and J_{2} are interface between A and B but they have different direction. So the integration on I_{4} and J_{2} can be cancelled with each other. Therefore if we add the above two equalities, we get

$$
\int_{I_{1}+I_{2}+I_{3}+J_{3}+J_{4}+J_{1}} f(z) \mathrm{d} z=0 .
$$

In this new contour, the interface between A and B disappear. The same technique can be applied to the remaining boxes and show that

$$
\begin{equation*}
\int_{\Gamma_{1}-\Gamma_{2}} f(z) \mathrm{d} z=0 . \tag{0.1}
\end{equation*}
$$

notice here Γ_{2} is chosen to be positively oriented. From Figure 3, we see that the curve $I_{3}+J_{3}$ have different orientation from $I_{1}+J_{1}$. Therefore after cancellation of interfaces, the outer curve should be Γ_{1} and has the same orientation as Γ_{1} but the interior curve coincide with Γ_{2} but have different orientation as we choose for the Γ_{2}. That is why we have a negative sign in front of Γ_{2} in (0.1). Rewriting (0.1), we obtain

$$
\int_{\Gamma_{1}} f(z) \mathrm{d} z=\int_{\Gamma_{2}} f(z) \mathrm{d} z .
$$

If Γ_{1} can be deformed to a point P (see Figure 2) and f is analytic on a disk around P, then we know that

$$
\int_{\gamma} f(z) \mathrm{d} z=0 .
$$

Therefore we further show that

$$
\int_{\Gamma_{1}} f(z) \mathrm{d} z=0 .
$$

Summarizing all the arguments above, we have

Theorem 0.2. if f is analytic in a domain Ω and γ is a closed curve homogeneous to a point in Ω, then

$$
\int_{\gamma} f(z) \mathrm{d} z=0
$$

A straightforward application of Theorem 0.2 is the so-called Laurent series. Given an annulus shown as in Figure $4, z_{0}$ is the center. The outer circle has radius r_{2} and interior circle has radius $r_{1} . z$ is an arbitrary point on the annulus. If $f(\zeta)$ is analytic on the annulus, then by removability of singularities, $(f(\zeta)-f(z)) /(\zeta-z)$ is also analytic in the annulus with resepct to the variable ζ. Choosing the contour $I_{1}+I_{2}+I_{3}+I_{4}$, it is homogeneous to a point in the annulus, therefore we have by Theorem 0.2 that

$$
\int_{I_{1}+I_{2}+I_{3}+I_{4}} \frac{f(\zeta)-f(z)}{\zeta-z} \mathrm{~d} \zeta=0
$$

I_{2} and ${ }_{4}$ can be cancelled with each other since they have different direction, therefore we obtain from the above equality that

$$
\begin{equation*}
f(z) \int_{I_{1}+I_{3}} \frac{1}{\zeta-z} \mathrm{~d} \zeta=\int_{I_{1}+I_{3}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \tag{0.2}
\end{equation*}
$$

Noting that the index of z with resepct to I_{1} equals to 1 and the index of z with respect to I_{3} is 0 , therefore the left-hand side of (0.2) equals to $2 \pi i f(z)$. furthermore (0.2) can be rewritten as

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta+\frac{1}{2 \pi i} \int_{I_{3}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \tag{0.3}
\end{equation*}
$$

Now we deal with the integraion on I_{1} on the right-hand side of (0.3). clearly

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta & =\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\zeta-z_{0}+z_{0}-z} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\zeta-z_{0}} \frac{1}{1-\frac{z-z_{0}}{\zeta-z_{0}}} \mathrm{~d} \zeta
\end{aligned}
$$

Noticing that on $I_{1},\left|\zeta-z_{0}\right|>\left|z-z_{0}\right|$, therefore it holds by geometric series that

$$
\begin{align*}
\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta & =\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\zeta-z_{0}} \sum_{k=0}^{\infty}\left(\frac{z-z_{0}}{\zeta-z_{0}}\right)^{k} \mathrm{~d} \zeta \tag{0.4}\\
& =\sum_{k=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{I_{1}} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \mathrm{~d} \zeta\right)\left(z-z_{0}\right)^{k} \tag{0.5}
\end{align*}
$$

As for the integration on I_{3}, similarly we have

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{I_{3}} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta & =\frac{1}{2 \pi i} \int_{I_{3}} \frac{f(\zeta)}{\zeta-z_{0}+z_{0}-z} \mathrm{~d} \zeta \\
& =-\frac{1}{2 \pi i} \int_{I_{3}} \frac{f(\zeta)}{z-z_{0}} \frac{1}{1-\frac{\zeta-z_{0}}{z-z_{0}}} \mathrm{~d} \zeta \\
& =\frac{1}{2 \pi i} \int_{-I_{3}} \frac{f(\zeta)}{z-z_{0}} \sum_{k=0}^{\infty}\left(\frac{\zeta-z_{0}}{z-z_{0}}\right)^{k} \mathrm{~d} \zeta \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{2 \pi i} \int_{-I_{3}} f(\zeta)\left(\zeta-z_{0}\right)^{k} \mathrm{~d} \zeta\right)\left(z-z_{0}\right)^{-(k+1)}
\end{aligned}
$$

summarizing the above arguments, we know that

Theorem 0.3. if f is analytic on the annulus with outer circle I_{1} and inner circle I_{3} (see figure 4), then f can be expanded by

$$
f(z)=\sum_{k=-\infty}^{\infty} A_{k}\left(z-z_{0}\right)^{k}
$$

where

$$
A_{k}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)^{k+1}} \mathrm{~d} \zeta
$$

Here if $k=0,1,2, \ldots$, then Γ in A_{k} is the positively oriented outer circle I_{1}. If $k=-1,-2, \ldots$, then Γ is the positively oriented inner circle I_{3}.

Using Theorem 0.3 , we see that

$$
f(z)=\sum_{k=-2}^{-\infty} A_{k}\left(z-z_{0}\right)^{k}+\sum_{k=0}^{\infty} A_{k}\left(z-z_{0}\right)^{k}+\frac{A_{-1}}{z-z_{0}}
$$

all functions on the right-hand side above has anti-derivatives except the function

$$
\frac{A_{-1}}{z-z_{0}} .
$$

Therefore given a closed curve γ in the annulus, we can easily show that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} f(z) \mathrm{d} z=\frac{1}{2 \pi i} \int_{\gamma} \frac{A_{-1}}{z-z_{0}} \mathrm{~d} z=A_{-1} n\left(\gamma, z_{0}\right) \tag{0.7}
\end{equation*}
$$

From the above calculations, we see that A_{-1} is of most important to us comparing to the other coefficients. So we give a special name for it.

Definition 0.4. We call A_{-1} the residue of a given function f at z_{0}, denoted by $\operatorname{Res}\left(f, z_{0}\right)$. The expansion in Theorem 0.3 is called Laurent series.

Before moving forward, let us study the uniqueness of the expansion in Theorem 0.3 and a little bit generalization of (0.7).

Uniqueness of Expansion Suppose that there is another expansion of f on annulus, say

$$
f(z)=\sum_{k=-\infty}^{\infty} B_{k}\left(z-z_{0}\right)^{k}
$$

then clearly we have

$$
\frac{1}{2 \pi i} \int_{I_{1}} f(z)=\frac{1}{2 \pi i} \int_{I_{1}} \frac{A_{-1}}{z-z_{0}}=\frac{1}{2 \pi i} \int_{I_{1}} \frac{B_{-1}}{z-z_{0}}=A_{-1}=B_{-1}
$$

Multiply $f(z)$ by $z-z_{0}$ and applying the same calculations, we know that

$$
\frac{1}{2 \pi i} \int_{I_{1}}\left(z-z_{0}\right) f(z)=\frac{1}{2 \pi i} \int_{I_{1}} \frac{A_{-2}}{z-z_{0}}=\frac{1}{2 \pi i} \int_{I_{1}} \frac{B_{-2}}{z-z_{0}}=A_{-2}=B_{-2}
$$

Inductively we know that for any k, it holds

$$
\frac{1}{2 \pi i} \int_{I_{1}}\left(z-z_{0}\right)^{k} f(z)=\frac{1}{2 \pi i} \int_{I_{1}} \frac{A_{-(k+1)}}{z-z_{0}}=\frac{1}{2 \pi i} \int_{I_{1}} \frac{B_{-(k+1)}}{z-z_{0}}=A_{-(k+1)}=B_{-(k+1)}
$$

Therefore we have

Theorem 0.5. If on a annulus f can be written as

$$
f(z)=\sum_{k=-\infty}^{\infty} B_{k}\left(z-z_{0}\right)^{k}
$$

then it must be the Laurent series of f.

Generalization of (0.7) The generalization of (0.7) in the following is the so-called Residue theorem
Theorem 0.6. Given a closed curve γ positively oriented (see figure 5) and letting Ω is the region enclosed by γ, if f is analytic in Ω except finitely many singularities $\left\{z_{1}, \ldots, z_{n}\right\}$, then

$$
\frac{1}{2 \pi i} \int_{\gamma} f(z) \mathrm{d} z=\sum_{k=1}^{n} \operatorname{Res}\left(f, z_{j}\right)
$$

The proof of this theorem is simple. using the contour in figure 5 , we can easily show that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\gamma} f(z) \mathrm{d} z=\sum_{k=1}^{n} \frac{1}{2 \pi i} \int_{\gamma_{k}} f(z) \mathrm{d} z \tag{0.8}
\end{equation*}
$$

Here in (0.8), we used the general Cauchy theorem. Then apply (0.7) to the right-hand side above, the proof of Theorem 0.6 follows.

In light of the above arguments, we know that the most important thing in the evaluating of contour integral for a complex function is to find out its residue. Here we give a method to search residues of some special functions.

Case 1. In this case we assume z_{0} is a singularity of f and moreover

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=c
$$

where c is constant. We claim that in this case c equals to the residue of f at z_{0}. In fact, we consider the function

$$
g(z)=f(z)-\frac{c}{z-z_{0}}
$$

by the assumption above, one can easily show that

$$
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) g(z)=0
$$

Therefore applying the removability of singularity to g, we know that g is analytic at z_{0}. In other words

$$
f(z)=\frac{c}{z-z_{0}}+g(z)
$$

where g is analytic at z_{0}. Clearly g can be expanded by Taylor series, Therefore by the uniqueness theorem 0.5 , we know that

$$
f(z)=\frac{c}{z-z_{0}}+\text { Taylor Series of } g
$$

Clearly c is the coefficient in front of $\frac{1}{z-z_{0}}$. That is the residue of f at z_{0}.
Example 1. suppose that $a \neq b$ are two complex numbers, then

$$
\frac{e^{z}}{(z-a)(z-b)}
$$

has two singularities, a and b. Since

$$
\lim _{z \rightarrow a} \frac{e^{z}}{(z-a)(z-b)}(z-a)=\lim _{z \rightarrow a} \frac{e^{z}}{z-b}=\frac{e^{a}}{a-b}
$$

Therefore we have

$$
\operatorname{Res}\left(\frac{e^{z}}{(z-a)(z-b)}, a\right)=\frac{e^{a}}{a-b} .
$$

Example 2. consider $1 / \sin z$. This function has singularities at $k \pi$ where k are all integers. by L'Hospitale rule, we know that

$$
\lim _{z \rightarrow k \pi} \frac{z-k \pi}{\sin z}=(-1)^{k}
$$

Therefore it holds

$$
\operatorname{Res}\left(\frac{1}{\sin z}, k \pi\right)=(-1)^{k}
$$

Case 2. The functions in case 2 are powers of all functions in case 1. Since the functions in case 1 can be written as

$$
f(z)=\frac{c}{z-z_{0}}+g(z)
$$

where $g(z)$ is analytic at z_{0}. Therefore

$$
(f(z))^{n}=\left(\frac{c}{z-z_{0}}+g(z)\right)^{n}
$$

Using Binomial formula, we know that the higher order of the pole z_{0} must be n. So in order to get the coefficient of $\left(z-z_{0}\right)^{-(n-1)}$, we just need move $c^{n} /\left(z-z_{0}\right)^{n}$ to the left and calculuate the limit

$$
\lim _{z \rightarrow z_{0}}\left((f(z))^{n}-\frac{c^{n}}{\left(z-z_{0}\right)^{n}}\right)\left(z-z_{0}\right)^{n-1}
$$

Then can we get the coefficient of $A_{-(n-1)}$ from the above limit. To get $A_{-(n-2)}$ we just need move $A_{-(n-1)} /\left(z-z_{0}\right)^{n-1}$ to the left and calculuate

$$
\lim _{z \rightarrow z_{0}}\left((f(z))^{n}-\frac{c^{n}}{\left(z-z_{0}\right)^{n}}-\frac{A_{-(n-1)}}{\left(z-z_{0}\right)^{n-1}}\right)\left(z-z_{0}\right)^{n-2}
$$

Inductively we can find out the coefficient A_{-1} in finite steps.
Example 3. $1 / \sin ^{2} z$. We know that

$$
\frac{1}{\sin ^{2} z}=\left(\frac{1}{z}+g(z)\right)^{2}
$$

in a neighborhood of $z_{0}=0$. Therefore $z_{0}=0$ is a pole of $1 / \sin ^{2} z$ with order 2 . To get A_{-1} at $z_{0}=0$, we just need calculate

$$
\lim _{z \rightarrow 0} z\left(\frac{1}{\sin ^{2} z}-\frac{1}{z^{2}}\right)
$$

Finally one can show that the above limit is 0 .

